




# **A**PPLICATIONS

- ► Digital Data Links
- ► PC-to-Peripheral Links
- ► Process Control
- ► Digitized Audio
- ► Motor Controller Triggering
- Intra-System Links: Board-to-Board, Rack-to-Rack
- ► Medical Instruments
- ► Automotive Electronics
- Robotics Communications
- ► EMC/EMI Signal Isolation

#### DESCRIPTION

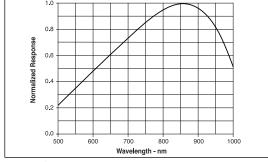
The IF-D96 is a medium-speed photologic detector housed in a "connector-less" style plastic fiber optic package. The detector contains an IC with a photodiode, linear amplifier and Schmitt trigger logic circuit. The IF-D96 features an inverted open-collector Schottky transistor (active low). The device can drive up to 5 TTL loads over output (pull-up) voltages ranging from 4.5 to 18 Volts. Optical response extends from 400 to 1100 nm, making it compatible with a wide range of LED and laser diode sources. The detector package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 µm core plastic fiber cable.

## **APPLICATION HIGHLIGHTS**

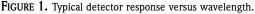
The IF-D96 is suitable for digital data links at rates up to 5 Mbps. A Schmitt trigger improves noise immunity and TTL/CMOS logic compatibility greatly simplifies interfacing with existing digital circuits. The integrated design of the IF-D96 provides simple, cost-effective implementation in a variety of digital applications.

### FEATURES

- High Optical Sensitivity
- ♦ Mates with Standard 1000 µm Core Jacketed Plastic Fiber Optic Cable
- No Optical Design Required
- ◆ Inexpensive Plastic Connector Housing
- Internal Micro-Lens for Efficient Optical Coupling
- ◆ Connector-Less Fiber Termination
- ◆ Light-Tight Housing Provides Interference-Free Transmission
- ◆ Open Collector Output


# MAXIMUM RATINGS

 $(T_{A} = 25^{\circ}C)$ 


| Operating and Storage<br>Temperature Range<br>(T <sub>OP</sub> , T <sub>STG</sub> )40° to 85°C                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} \mbox{Soldering Temperature} \\ (2 \mbox{ mm from case bottom}) \\ (T_S) \mbox{t} \le 5 \mbox{s} \hdots  \mbox{240°C} \end{array}$ |
| Supply Voltage, (V <sub>S</sub> )                                                                                                                    |
| Voltage at Output lead                                                                                                                               |
| Sinking Current, DC $(I_C)$ 25 mA                                                                                                                    |
| Open Collector Power Dissipation<br>$(P_{TOT}) T_A=25^{\circ}C \dots 40 \text{ mW}$<br>De-rate Above $25^{\circ}C \dots 1.33 \text{ mW/}^{\circ}C$   |
| De late 1 2010 20 0                                                                                                                                  |

### **CHARACTERISTICS** (T<sub>A</sub>=25°C)

| Parameter                                                       | Symbol            | Min | Тур   | Max  | Unit |
|-----------------------------------------------------------------|-------------------|-----|-------|------|------|
| Peak Sensitivity                                                | λ <sub>PEAK</sub> | -   | 850   | -    | nm   |
| Spectral Sensitivity (S=10% of S <sub>MAX</sub> )               | Δλ                | 400 | -     | 1100 | nm   |
| Operating Voltage                                               | V <sub>CC</sub>   | -   | -     | 5.5  | V    |
| High Level Supply Current V <sub>CC</sub> =5.25 V               | I <sub>CCL</sub>  | -   | 3.5   | 6.3  | mA   |
| Low Level Supply Current V <sub>CC</sub> =5.25 V                | I <sub>CCL</sub>  | -   | 6.2   | 10   | mA   |
| Light Required to Trigger (V <sub>CC</sub> =5 V,                | Er (+)            | -   | 3.5   | -    | μW   |
| $R_L=1 \text{ k}\Omega \lambda=660 \text{ nm}$                  |                   | -   | -24.5 |      | dBm  |
| High Level Output Current V <sub>OH</sub> = 18 V)               | I <sub>OH</sub>   | -   | 5     | 250  | μΑ   |
| Low Level Output Voltage (I <sub>OL</sub> = 8 mA)               | V <sub>OL</sub>   | -   | 0.4   | .5   | V    |
| Propagation Delay, Low-High (f= 100.0 kHz, $R_L$ = 5 TTL Loads) | t <sub>PLH</sub>  | _   | 65    | -    | ns   |
| Propagation Delay, High-Low<br>(f= 100.0 kHz, R= 5 TTL Loads)   | t <sub>PHL</sub>  | -   | 49    | -    | ns   |



-1)9/



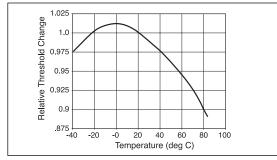
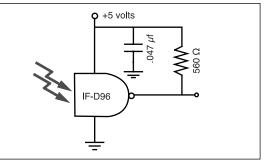
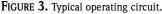





FIGURE 2. Normalized threshold irradiance vs. amb. temp.





## FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

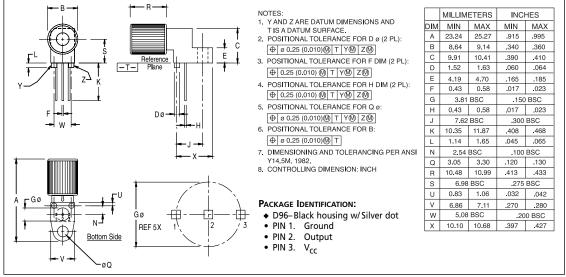



FIGURE 4. Case outline.